TBL6/20

AIR COOLED COAXIAL R.F. POWER TRIODE

	al al	QUICK	REFERE	NCE DATA	History	
Freq.	C telegr. grounded grid		B television			
			Neg. mod. Pos. sync.		Pos. mod. Neg. sync.	
(MHz)	V _a (kV)	W _o (kW)	V _a (kV)	Wo (kW) sync.	V _a (kV)	W _o (kW) white
110 48 to 88 170 to 220	5	17	5 4	wo17 to	5 4	17 12

HEATING: direct; filament thoriated tungsten

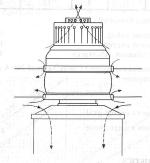
Anode to all other elements except grid field to all other elements except anode

Filament voltage 6.3 V 154 A Filament current Cold filament resistance $R_{fo} = 0.0054 \Omega$

The Hament current must never exceed a peak value of 500 A at any time during the initial energizing schedule

CAPACITANCES

hode to grid	C_{ag}	= 29	pF
YPICAL CHARACTERISTICS			
mode current	I_a	= st 4	A A Tames
mode voltage	V_a		ł kV
Amplification factor	intils (absolute b	= 60	E CONTRACTOR
Mutual conductance	S	= 60	


Anode fully screened from filament terminals by a flat metal screen connected the grid terminal

TBL6/20

AIR COOLING CHARACTERISTICS. See also the cooling curves on page D

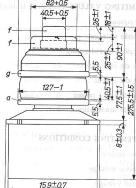
	W _a (kW)	h (m)	t _i (°C)	q _{min} (m³/min)	p _i (mm H ₂ 0)
100	5.5	0	35	5.0	16
2		1500	35	5.9	16
		3000	AC 25)VIS	5[343 5.7 (311)	16
	8	0	35	7.7	35
	inguiti en de	1500	35.	9	40
Jag	10 809	3000	25	9	36
	10	0	35	11	65
7226		1500	35	13 W	75
Milite		3000	25	(VH) 13 (VH)	66

Recommended direction of air flow

Generally it is necessary to direct an air flow on the grid, anode and filament seals. E.g. at 220 MHz an air flow of 0.6 $\rm m^3/min$ on each of these seals in necessary.

TEMPERATURE LIMITS (Absolute limits)

Temperature of seals


= max. 180 °C

TBL6/20

MECHANICAL DATA

Not weight: 9.5 kg

oline of the Whyland Dimensions in mm

159±0.7 169±0.5

Recentricity of outer diameters of the electrode terminals and of the protruding odge of the radiator housing with respect to the radiator housing is max. 1 mm Mounting position: vertical with anode up or down

ACCESSORIES

Insulating pedestal Orld and anode connector 40651 Inner filament connector 40652 Outer filament connector

7Z2 3474